
Structure of C Language program

1) Comment line
2) Preprocessor directive

3) Global variable declaration

4) main function()

{

Local variables;

Statements;

}

User defined function

}

}

Comment line

It indicates the purpose of the program. It is represented as
/*……………………………..*/
Comment line is used for increasing the readability of the program. It is useful in

explaining the program and generally used for documentation. It is enclosed within

the decimeters. Comment line can be single or multiple line but should not be

nested. It can be anywhere in the program except inside string constant & character

constant.

Preprocessor Directive:

#include<stdio.h> tells the compiler to include information about the standard

input/output library. It is also used in symbolic constant such as #define PI

3.14(value). The stdio.h (standard input output header file) contains definition

&declaration of system defined function such as printf(), scanf(), pow() etc.

Generally printf() function used to display and scanf() function used to read value

Global Declaration:

This is the section where variable are declared globally so that it can be access by

all the functions used in the program. And it is generally declared outside the

function :

main()

It is the user defined function and every function has one main() function from

where actually program is started and it is encloses within the pair of curly braces.

The main() function can be anywhere in the program but in general practice it is

placed in the first position.

Syntax :

main()

{

……..

……..
……..

}

The main() function return value when it declared by data type as

int main()

{

return 0
}

The main function does not return any value when void (means null/empty) as

void main(void) or void main()

{

printf (“C language”);

}
Output: C language

The program execution start with opening braces and end with closing brace.
And in between the two braces declaration part as well as executable part is

mentioned. And at the end of each line, the semi-colon is given which indicates

statement termination.

/*First c program with return statement*/

#include <stdio.h>

int main (void)

{

printf ("welcome to c Programming language.\n");

return 0;

}

Output: welcome to c programming language.

Steps for Compiling and executing the Programs

A compiler is a software program that analyzes a program developed in a particular

computer language and then translates it into a form that is suitable for execution

on a particular computer system. Figure below shows the steps that are involved in

entering, compiling, and executing a

computer program developed in the C programming language and the typical Unix

commands that would be entered from the command line.

Step 1: The program that is to be compiled is first typed into a file on the

computer system. There are various conventions that are used for naming files,

typically be any name provided the last two characters are “.c” or file with

extension .c. So, the file name prog1.c might be a valid filename for a C program.

A text editor is usually used to enter the C program into a file. For example, vi is a

popular text editor used on Unix systems. The program that is entered into the file

is known as the source program because it represents the original form of the

program expressed in the C language.

Step 2: After the source program has been entered into a file, then proceed to have

it compiled. The compilation process is initiated by typing a special command on

the system. When this command is entered, the name of the file that contains the

source program must also be specified. For example, under Unix, the command to

initiate program compilation is called cc. If we are using the popular GNU C

compiler, the command we use is gcc.

Typing the line

gcc prog1.c or cc prog1.c
In the first step of the compilation process, the compiler examines each program
statement contained in the source program and checks it to ensure that it conforms

to the syntax and semantics of the language. If any mistakes are discovered by the

compiler during this phase, they are reported to the user and the compilation

process ends right there. The errors then have to be corrected in the source program

(with the use of an editor), and the compilation process must be restarted. Typical

errors reported during this phase of compilation might be due to an expression that

has unbalanced parentheses (syntactic error), or due to the use of a variable that is

not “defined” (semantic error).

Step 3: When all the syntactic and semantic errors have been removed from the

program, the compiler then proceeds to take each statement of the program and

translate it into a “lower” form that is equivalent to assembly language program

needed to perform the identical task.

Step 4: After the program has been translated the next step in the compilation

process is to translate the assembly language statements into actual machine

instructions. The assembler takes each assembly language statement and converts it

into a binary format known as object code, which is then written into another file

on the system. This file has the same name as the source file under Unix, with the

last letter an “o” (for object) instead of a “c”.

Step 5: After the program has been translated into object code, it is ready to be

linked. This process is once again performed automatically whenever the cc or gcc

command is issued under Unix. The purpose of the linking phase is to get the

program into a final form for execution on the computer.

If the program uses other programs that were previously

processed by the compiler, then during this phase the programs are linked together.

Programs that are used from the system’s program library are also searched and

linked together with the object program during this phase.

The process of compiling and linking a program is often called building.

The final linked file, which is in an executable object code format, is stored in

another file on the system, ready to be run or executed. Under Unix, this file is

called a.out by default. Under Windows, the executable file usually has the same

name as the source file, with the c extension replaced by an exe extension.

Step 6: To subsequently execute the program, the command a.out

has the effect of loading the program called a.out into the

computer’s memory and initiating its execution.

When the program is executed, each of the statements of the

program is sequentially executed in turn. If the program requests

any data from the user, known as input, the program temporarily

suspends its execution so that the input can be entered. Or, the

program might simply wait for an event, such as a mouse being

clicked, to occur. Results that are displayed by the program, known

as output, appear in a window, sometimes called the console. If the

program does not produce the desired results, it is necessary to go

back and reanalyze the program’s logic. This is known as the

debugging phase, during which an attempt is made to remove all

the known problems or bugs from the program.

Preprocessor Commands

A program in C language involves into different

processes. Below diagram will help you to understand

all the processes that a C program comes across.

The C Preprocessor is not a part of the compiler, but is a separate step in the

compilation process. In simple terms, a C Preprocessor is just a text

substitution tool and it instructs thecompiler to do required pre-processing

before the actual compilation. All preprocessor commands begin with a hash

symbol (#).

	Structure of C Language program
	Comment line
	Preprocessor Directive:
	Global Declaration:
	main()
	/*First c program with return statement*/
	Steps for Compiling and executing the Programs
	Preprocessor Commands

